

Electric Power Business

電気事業

「電気事業」の主な販売先

関西電力 17.6%

橘湾火力発電所(徳島県)

卸電気事業 ~ 火力発電 ~

事業の概要と特徴

J-POWER の火力発電は石炭火力に特化しています。 J-POWERで初めての火力発電所は、当時の国の国内炭政策に協力する形で1963年に営業運転を開始しました。1970年代のオイルショック後、石油火力が中心であった電源構成の多様化を図る政策を受け、J-POWER は1981年に国内初の海外炭を利用した松島火力発電所の運転を開始しました。その後、松浦火力発電所や橘湾火力発電所等の大規模海外炭火力を次々と開発し事業規模を拡大するとともに、蒸気条件の向上やプラント規模の大型化等による発電効率の向上を図り、競争力の向上と環境負荷の低減に努めてきました。J-POWERの石炭火力発電設備は経済的かつ安定的なベース電源として、高い利用率を維持しています。

J-POWERは地熱発電についても取り組んでおり、1975年から宮城県大崎市において鬼首地熱発電所を運転しています。

J-POWERの火力発電事業の収益は、そのほとんどが一般電気事業者からの販売電力料収入であり、原価主義による個別地点毎の電力受給契約に基づいています。電力供給を行う上で必要と想定される適正な原価に事業報酬を加えて算出する原価主義を採用し、事業運営に必要な収入の確保と投下資本の回収を行っています(詳細は22ページ「国内卸電気事業の料金体系」をご覧ください)。なお、現在、政府は電力システム改革に取り組んでいます(詳細は7ページ「東日本大震災後の電力システム改革」をご覧ください)。今後、電力システム改革による事業環境の変化に対応するために、J-POWERは柔軟に事業構造を変革し、競争力強化を図っていきたいと考えています。

____ 発電所の新規開発計画

J-POWERは、新たな石炭火力の取り組みとして、広島県にある竹原火力発電所でのリプレース計画を進めています。現在運転中の1号機~3号機(計130万kW)のうち、運転開始から約40年を経過した1号機(25万kW、1967年7月営業運転開始)および2号機(35万kW、1974年6月営業運転開始)を、最先端技術を導入して新1号機(60万kW)にリプレースする予定です。2014年3月に環境アセスメントの手続きを終了し、建設工事に着手しており、2020年9月の営業運転開始を目指しています。

竹原火力新1号機(完成予想図)

2013年12月にJ-POWERは新日鐵住金(株)との共同出 資により鹿島パワー株式会社を設立しました。茨城県に65 万kW級の石炭火力発電所を建設する計画であり、2020年の 営業運転開始を目指して、現在環境アセスメントの手続きを 実施しています。

また、兵庫県にある高砂火力発電所では、最先端技術を導 入して増容量リプレースに向けた取り組みを進めています。 現在運転中の1・2号機(各25万kW)を、設備更新によって各 60万kW、合計出力120万kWとする計画です。2014年7月 に環境アセスメントの手続きを開始しており、今後は2018年 に着工、2021年に新1号機の営業運転開始、2027年に新2号 機の営業運転開始を予定しています。

これら石炭火力の取り組みに加えて、秋田県湯沢市では、 三菱マテリアル(株)、三菱瓦斯(株)と共同でJ-POWERに とって2地点目となる山葵沢地熱発電所の建設に向けて環境 アセスメントの手続きを実施しています。

石炭火力発電所

(2014年3月末現在)

(2014年3月本現在)				
発電所名		運転開始年	所在地	設備出力(kW)
磯子	新1号機 新2号機	2002年 2009年	神奈川県横浜市	600,000 562,000*4
高砂	1号機* ¹ 2号機* ¹	1968年 1969年	兵庫県高砂市	250,000 250,000
竹原	1号機* ² 2号機* ² 3号機	1967年 1974年* ³ 1983年	広島県竹原市	250,000 350,000 700,000
橘湾	1号機 2号機	2000年 2000年	徳島県阿南市	1,050,000 1,050,000
松島	1号機 2号機	1981年 1981年	長崎県西海市	500,000 500,000
松浦	1号機 2号機	1990年 1997年	長崎県松浦市	1,000,000 1,000,000
石川石炭	1号機 2号機	1986年 1987年	沖縄県うるま市	156,000 156,000
出力合計				8,374,000

- *1 既設1号機は2021年、既設2号機は2027年を目途に各60万kWの石炭火力設備へと増容量リプレースを計画 *2 2020年を目途に、既設1・2号機合計と同じ出力規模となる60万kWの石炭火力発電設備への設備更新を計画 *3 1995年に重油焚きボイラから石炭焚き常圧流動床ボイラへ転換 *4 磯子新2号機は、2012年12月に発生した低圧タービン動翼の折損に伴い設備出力を600,000kWから562,000kWに下げて運転中

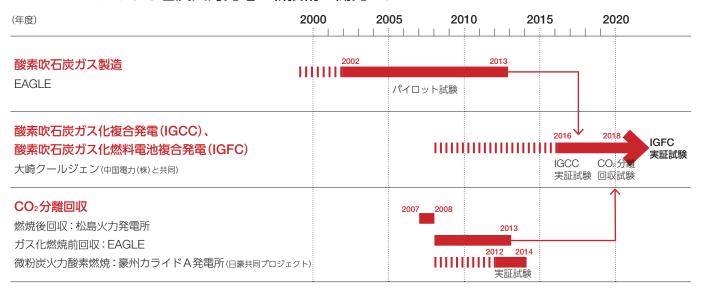
地熱発電所

(2014年3月末現在)

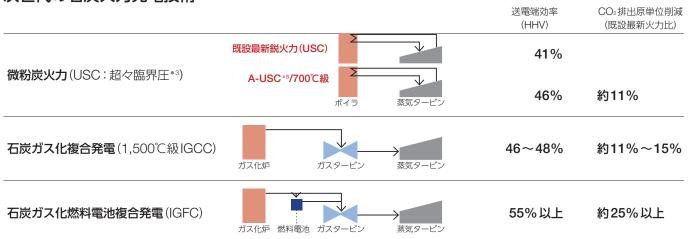
発電所名	運転開始年	所在地	設備出力(kW)
鬼首	1975年	宮城県大崎市	15,000

一 次世代の石炭火力発電技術・低炭素技術の開発

J-POWERは、次世代石炭火力技術の確立に向けて、石炭ガ ス化複合発電技術 (IGCC、IGFC)、さらにはCO2の回収・貯 留(CCS)技術の開発に取り組んでいます。J-POWERは、独 立行政法人新エネルギー・産業技術総合開発機構 (NEDO) と の共同研究事業者として、2002年度より酸素吹IGCCの実 現に向けた技術確立を目的としたEAGLE*5プロジェクトを


推進してきました。その後、EAGLEプロジェクトで得られた 知見と成果を活かし、中国電力(株)との共同で大崎クール ジェン・プロジェクトに取り組んでいます。 同プロジェクト では、2013年3月より16.6万kW(石炭処理量:1,180t/日) の酸素吹石炭ガス化実証プラントの建設を開始し、2016年 度に実証試験を開始する予定です。また、2018年からは最新

^{*5} EAGLE: J-POWER 若松研究所においてパイロット試験設備(石炭処理量: 150t/日)を利用し、石炭の多目的利用とCO2排出量低減を研究目的とした石炭ガス製造技術開発プロジェクトの 名称。Coal Energy Application for Gas, Liquid & Electricity の略。


のCO₂分離回収技術の試験を開始する計画であり、その後酸素吹IGCC*1に燃料電池を組み合わせたIGFC*2技術の開発も目指しています。このほかに、J-POWERでは、低炭素化に向けた取り組みとして、三菱重工業(株)と共同で松島火力発電所(長崎県西海市)においてCO₂分離回収技術の開発に向

けたパイロット試験(2007~2008年度)を実施しました。また、オーストラリア・クイーンズランド州のカライドA発電所では、日豪官民による共同プロジェクトとして、世界初となる酸素燃焼・CCS一貫プロセスによる発電所実機での実証試験を進めています。

J-POWERにおける石炭火力発電の新技術の開発スケジュール

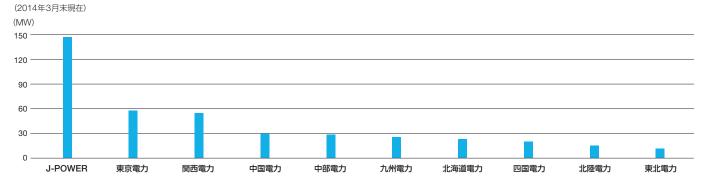
次世代の石炭火力発電技術

^{* 1} 石炭ガス化複合発電 (IGCC):石炭から生成したガスを燃焼させて発電するガスタービンと、ガスタービンの排熱を利用する蒸気タービンの2種の発電形態による複合発電システム。 * 2 石炭ガス化燃料電池複合発電(IGFC):燃料電池、ガスタービン、蒸気タービンの3つの発電形態を組み合わせた複合発電システムで、石炭火力発電としては最高効率水準の発電システム。

^{** 3} 超々臨界圧(USC):微粉炭火力の現時点での最先端技術。圧力22.1MPa以上かつ温度566でより高い蒸気条件を採用。

卸電気事業 ~ 水力発電 ~

事業の概要と特徴


J-POWERは、これまで半世紀以上にわたる水力発電所の建設・運営の実績を有しています。戦後の電力不足を解消するべく1956年に運転を開始した佐久間発電所をはじめとして大規模一般水力発電所を多数開発し、1970年代以降には新豊根発電所等の大規模揚水発電所を開発しました。

J-POWERの水力発電の特徴のひとつが、発電所当たりの設備出力が大きいことです。水量に恵まれた水系に建設された大規模な一般水力発電所と揚水発電所を主力として、各地の電力供給に寄与しています。水力発電は電力需要の変動に素早く対応できるため、昼夜間・季節間での需給調整が必要となる日本の電力系統において、ピーク対応能力を有する負荷調整機能に優れた電源として利用されています。また、貴

重な純国産エネルギーであり、かつCO₂フリー電源として再生可能エネルギーの中心的な役割を果たしています。 J-POWERは長年にわたり水力発電事業を展開する中で、ダム貯水池へ流下してくる土砂が堆積することにより生じる問題や災害などに適切に対応し、効率的な発電所の保守・管理を継続しながら、水力発電所の長期安定運用に努めています。

J-POWERの一般水力発電の料金は大部分を定額(基本料金)、揚水発電はすべてを定額(基本料金)としています。どちらも原価主義に基づいた水系別または地点別の電力受給契約により、一般電気事業者に販売しており、事業運営に必要な収入の確保と投下資本の回収を行っています(詳細は22ページ「国内卸電気事業の料金体系」をご覧ください)。

各電力会社の水力発電所当たり設備出力

出所:「電力調査統計」(資源エネルギー庁)の「発電所認可出力表」より作成

奥只見発電所(福島県)

佐久間発電所(静岡県)

奥清津発電所(新潟県)

田子倉発電所(福島県)

発電所設備の一括更新・新設

J-POWERは、運転から長期間経過した水力発電所において 主要電気設備の一括更新を実施しています。これにより、発 電所の延命化・設備信頼性の向上を図るだけでなく、最新技 術を採用した最適設計によって発電出力および発電電力量の 増加を図っています。

岩手県奥州市では、国土交通省の胆沢ダム事業の一環とし

て、約60年運転した発電所に替わって2011年2月から胆沢 第一発電所(出力14,200kW)の建設が進められ、2014年7 月に運転を開始しています。加えて北海道では、屈足ダムからの河川維持流量を活用した小水力発電所(470kW)の建設工事などを進めています。

主な水力発電所

(2014年3月末現在)

発電所名	運転開始年	所在地	設備出力(kW)	発電所形式	水系-河川名
下郷	1988年	福島県南会津郡下郷町	1,000,000	ダム水路式(揚水式)	阿賀野川-小野川
奥只見	1960年	福島県南会津郡檜枝岐村	560,000	ダム水路式	阿賀野川-只見川、袖沢
大鳥	1963年	福島県南会津郡只見町	182,000	ダム式	阿賀野川-只見川
田子倉	1959年	福島県南会津郡只見町	400,000	ダム式	阿賀野川-只見川
只見	1989年	福島県南会津郡只見町	65,000	ダム式	阿賀野川-只見川
滝	1961年	福島県大沼郡金山町	92,000	ダム式	阿賀野川-只見川
黒又川第一	1958年	新潟県魚沼市	61,500	ダム水路式	信濃川-黒又川、末沢川
奥清津	1978年	新潟県南魚沼郡湯沢町	1,000,000	ダム水路式(揚水式)	信濃川-清津川、カッサ川
奥清津第二	1996年	新潟県南魚沼郡湯沢町	600,000	ダム水路式(揚水式)	信濃川-清津川、カッサ川
沼原	1973年	栃木県那須塩原市	675,000	ダム水路式(揚水式)	那珂川-那珂川
水窪	1969年	静岡県浜松市天竜区	50,000	ダム水路式	天竜川-水窪川、気田川
新豊根	1972年	愛知県北設楽郡豊根村	1,125,000	ダム水路式(揚水式)	天竜川-大入川
佐久間	1956年	静岡県浜松市天竜区	350,000	ダム水路式	天竜川-天竜川
御母衣	1961年	岐阜県大野郡白川村	215,000	ダム水路式	庄川-庄川
御母衣第二	1963年	岐阜県大野郡白川村	59,200	ダム水路式	庄川-大白川
長野	1968年	福井県大野市	220,000	ダム式 (揚水式)	九頭竜川-九頭竜川、石徹白川
湯上	1968年	福井県大野市	54,000	ダム水路式	九頭竜川-九頭竜川、石徹白川
手取川第一	1979年	石川県白山市	250,000	ダム水路式	手取川-手取川、瀬波川、尾添川
十津川第一	1960年	奈良県吉野郡十津川村	75,000	ダム水路式	新宮川-熊野川、滝川、芦廼瀬川
十津川第二	1962年	和歌山県新宮市	58,000	ダム水路式	新宮川-熊野川
池原	1964年	奈良県吉野郡下北山村	350,000	ダム式(揚水式)	新宮川-北山川、池郷川
七色	1965年	和歌山県東牟婁郡北山村	82,000	ダム水路式	新宮川-北山川
二又	1963年	高知県安芸郡北川村	72,100	ダム水路式	奈半利川-奈半利川
川内川第一	1965年	鹿児島県薩摩郡さつま町	120,000	ダム式	川内川-川内川

⁽注)最大出力50,000 kW以上の発電所を掲載

卸電気事業 ~ 送・変電(託送) ~

事業の概要と特徴

J-POWER は、広域的な電力供給を行う卸電気事業者として、 全国に総延長約2,400kmに及ぶ送電線と9ヵ所の変電所・変 換所を保有・運転しています。自社の発電所で発電した電力を 需要地に送るとともに、全国の電力会社の系統の一部を担い、 異なる地域電力会社間を連系して、日本の電力系統全体を広 域的に運用する上で大きな役割を果たしています。

特に、本州と北海道・四国・九州のそれぞれをつなぐ広域連系設備(北本連系設備、本四連系線、阿南紀北直流幹線、関門連系線)や、周波数の異なる東日本(50ヘルツ)と西日本(60ヘルツ)をつなぐ佐久間周波数変換所は、日本の広域融通を担う重要な設備です。東日本大震災により電力需給が逼迫した状況において、J-POWERの送・変電設備は、需給バランスの確保に大きく貢献しました。今後も設備の信頼度を維持し、安定的な稼働を確保することに力を注いでいきます。

J-POWERは、全国に電力用通信ネットワークも整備しています。発電所の運転、電力系統の運用に寄与するため、電力設備の保護、監視・制御、運用業務等に使用されています。

佐久間周波数変電所

主な送電線路 (2014年3月末現在)

主な送電線路	運用開始年	区間	亘長	使用電圧
十勝幹線	1956年	足寄発電所~北海道電力 南札幌変電所	214.4km	187kV
北本直流幹線(直流区間)	1979年	函館交直変換所~上北交直変換所	167.4km	$DC \pm 250kV$
只見幹線	1959年	田子倉発電所~西東京変電所	216.2km	275kV-500kV
佐久間東幹線	1956年	佐久間発電所~西東京変電所	197.2km	275kV
佐久間西幹線	1956年	佐久間発電所~名古屋変電所	107.7km	275kV
御母衣幹線	1960年	御母衣発電所~名古屋変電所	108.6km	275kV
奈半利幹線	1960年	魚梁瀬発電所~伊予開閉所	119.9km	187kV
本四連系線	1994年	四国電力 讃岐変電所~中国電力 東岡山変電所	127.0km	500kV
阿南紀北直流幹線	2000年	阿南交直変換所~紀北交直変換所	99.8km	$DC \pm 250kV$
関門連系線	1980年	九州電力 北九州変電所~中国電力 新山口変電所	64.2km	500kV

変電所 (2014年3月末現在)

変電所名	運用開始年	所在地	出力
南川越変電所	1959年	埼玉県川越市	1,542,000kVA
西東京変電所	1956年	東京都町田市	1,350,000kVA
名古屋変電所	1956年	愛知県春日井市	1,400,000kVA
胆沢変電所	2012年	岩手県奥州市	9,000kVA

周波数変換所 (2014年3月末現在)

変換所名	運用開始年	所在地	出力
佐久間周波数変換所	1965年	静岡県浜松市天竜区	300,000kW

交直変換所 (2014年3月末現在)

変換所名	運用開始年	所在地	出力
函館変換所	1979年	北海道亀田郡七飯町	600,000kW
上北変換所	1979年	青森県上北郡東北町	600,000kW
紀北変換所	2000年	和歌山県伊都郡かつらぎ町	1,400,000kW
阿南変換所	2000年	徳島県阿南市	1,400,000kW

国内卸電気事業の料金体系

当社は、卸電気事業および電力託送における料金の算定について、必要と想定される適正な原価に事業報酬を加えて算定する原価主義を採用しています。

個別の料金については、設備種別毎に、地点別または水系別に算定し原価を基に販売先電力会社との間で契約を締結しています。また、料金は基本料金と従量料金により構成しています。

火力発電

火力設備の料金については、原価に占める燃料費等変動費の比重が高く、修繕費等維持運転費についても年度毎の原価変動が大きいことから、2年毎(石炭価格部分は価格の変動が著しい場合は、1年毎)に料金の見直しを行っています。燃料費等の変動費については販売電力量に応じた従量料金としています。燃料の調達にかかわる為替レートおよび重軽油価格変動に伴う燃料費変動については、四半期毎に調整する料金の仕組みになっています。変動費以外の固定費部分は基本料金としています。基本料金は、減価償却費、事業報酬のほか、修繕費等の維持運転費等からなり、維持運転費の増加や大規模な設備投資がない限り、設備の減価償却の進行および近年の金利等経費低下を反映して減少する傾向にあります。

水力発電/送・変電(託送)

水力、送・変電設備の料金については、原価に占める減価 償却費、事業報酬等の資本費の比重が高いことから、長 期安定化の観点より定期的な更改は行わず、金利・物価 等経済環境の変動ならびに自由化の進展等事業環境の変 化等に応じ、一般電気事業者と協議の上、改定を行って います。料金の構成としては、一般水力発電設備につい ては料金の8割程度を基本料金とし、残りの2割程度を 販売電力量に応じた従量料金としています。2割分は出 水率の変動により増減しますが影響は大きくありませ ん。一方、揚水発電設備、送・変電設備については、全額 を基本料金としています。

その他の電気事業

(IPP、新電力等向け火力および風力発電)

事業の概要と特徴

J-POWERは、子会社および関連会社を通じてIPPによる一般電気事業者向け電力卸供給事業、新電力(特定規模電気事業者)等向け電力卸供給事業および風力発電事業を行っています。

(IPP)

1995年の電気事業法改正により、IPPによる一般電気事業者向けの卸供給事業が制度化され、現在J-POWERでは全国3ヵ所、合計出力52万kW(持分出力27万kW)の火力発電設備を保有・運転し、一般電気事業者向け電力卸供給事業を展開しています。

〔新電力等向け火力発電〕

1999年の電気事業法改正により、2000年から電力の小売部門で部分自由化が導入され、新電力による市場参入が可能となりました。現在、J-POWERは、東京湾岸に3ヵ所、合計出力32万kW(持分出力28万kW)のガス火力発電所を保有・運転し、新電力等向け電力卸供給事業を展開しています。

(風力発電)

J-POWERは、国内で先行して風力発電事業に取り組み、 2000年に当社初の風力発電所で営業運転を開始しました。 これまで着実に事業拡大を進め、現在では全国19ヵ所(220 基)、合計出力38万kW (持分出力37万kW) の風力発電設備を保有し、国内第2位のシェアを占めています。J-POWERの風力事業では、発電所や送電線の建設・運転・保守で永年培ったノウハウと技術を活用して、風況調査から計画、建設および運転・保守に至るまで一貫した業務を実施する体制を整えています。これまでの多様な運用経験を活かし、運転・保守の効率化等を進め、稼働率の向上と収益力の強化に取り組んでいます。なお、2012年より固定価格買取制度が始まり、J-POWERでは新設の風力発電所だけでなく既設の発電所についても設備認定を取得しています。

〔新規地点の開発と洋上風力の取り組み〕

新規供給力の開発に向けた取り組みとして、2014年3月に北海道で風力発電所(出力2.8万kW)が新たに運転を開始し、今後も事業の拡大に向けて愛媛県で新たな発電所(出力2.16万kW)を建設するとともに風況良好な適地の継続的な発掘を図り、着実に新規開発を推進していきます。

また、NEDO受託事業として2009年度から2014年度にかけて洋上風況観測システムの実証研究を福岡県北九州市沖にて実施し、2011年度から2014年度にかけて、着床式の洋上風力発電システムの実証研究をNEDOとの共同研究として進めています。今後も洋上風力の実用化に向けて取り組んでいきます。

ベイサイドエナジー市原発電所(千葉県)

郡山布引高原風力発電所(福島県)

IPP

(2014年3月末現在)

発電所名	事業会社名	所在地	出力(kW)	燃料	当社出資比率*1	運転開始年*2
ジェネックス水江発電所	(株)ジェネックス*³	神奈川県川崎市	238,000	ガス残さ油	40% (東亜石油(株))	2003年
糸魚川発電所	糸魚川発電(株)	新潟県糸魚川市	134,000	石炭	80% (太平洋セメント(株))	2001年 (2003年)
土佐発電所	土佐発電(株)*3	高知県高知市	150,000	石炭	45% (四国電力(株)35%、 太平洋セメント(株)20%)	2005年
小計			522,000			

新電力等向け火力発電所

発電所名	事業会社名	所在地	出力(kW)	燃料	当社出資比率*1	運転開始年*2
市原パワー市原発電所	市原パワー(株)	千葉県市原市	110,000	ガス*4	60% (三井造船(株)40%)	2004年
ベイサイドエナジー市原発電所	(株) ベイサイドエナジー	千葉県市原市	107,650	ガス*4	100%	2005年
美浜シーサイドパワー新港発電所	美浜シーサイドパワー(株)	千葉県千葉市	104,770	ガス*4	100%	2005年
小計			322,420			

^{*1()}内は、共同事業者名 *2()内は、当社出資時期 *3 持分法適用会社 *4 発電方式はコンバインドサイクル

風力発電所 (2014年3月末現在)

発電所名	事業会社名	所在地	(基数)	出力(kW)	当社出資比率	運転開始年*5
さらきとまないウィンドファーム	さらきとまない風力(株)	北海道稚内市	(9)	14,850	100%	2001年 (2009年)
苫前ウィンビラ発電所	(株) ジェイウインド	北海道苫前郡苫前町	(19)	30,600	100%	2000年
島牧ウインドファーム	(株) ジェイウインド	北海道島牧郡島牧村	(6)	4,500	100%	2000年 (2009年)
瀬棚臨海風力発電所	(株) ジェイウインド	北海道久遠郡せたな町	(6)	12,000	100%	2005年
上ノ国ウインドファーム	(株) ジェイウインド	北海道檜山郡上ノ国町	(12)	28,000	100%	2014年
グリーンパワーくずまき風力発電所	(株) ジェイウインド	岩手県岩手郡葛巻町	(12)	21,000	100%	2003年
仁賀保高原風力発電所	仁賀保高原風力発電(株)	秋田県にかほ市	(15)	24,750	67%	2001年
郡山布引高原風力発電所	(株) ジェイウインド	福島県郡山市	(33)	65,980	100%	2007年
桧山高原風力発電所	(株) ジェイウインド	福島県田村市、 双葉郡川内村	(14)	28,000	100%	2011年
東京臨海風力発電所	(株) ジェイウインド	東京都	(2)	1,700	100%	2003年
石廊崎風力発電所	(株) ジェイウインド	静岡県賀茂郡南伊豆町	(17)	34,000	100%	2010年
田原臨海風力発電所	(株) ジェイウインド	愛知県田原市	(11)	22,000	100%	2005年
田原風力発電所	(株) ジェイウインド	愛知県田原市	(1)	1,980	100%	2004年
あわら北潟風力発電所	(株) ジェイウインド	福井県あわら市	(10)	20,000	100%	2011年
楊貴妃の里ウィンドパーク	(株) ジェイウインド	山口県長門市	(3)	4,500	100%	2003年 (2009年)
長崎鹿町ウインドファーム	長崎鹿町風力発電(株)	長崎県佐世保市	(15)	15,000	70%	2005年
阿蘇にしはらウィンドファーム	(株)グリーンパワー阿蘇	熊本県阿蘇郡西原村	(10)	17,500	100%	2005年
阿蘇おぐにウィンドファーム	(株)グリーンパワー阿蘇	熊本県阿蘇郡小国町	(5)	8,500	100%	2007年 (2009年)
南大隅ウィンドファーム	南九州ウインド・パワー (株)	鹿児島県肝属郡 南大隅町	(20)	26,000	99%	2003年(根占) (2009年) 2004年(佐多) (2009年)
国内合計			(220)	380,860		
ザヤツコボ風力発電所	Zajaczkowo Windfarm Sp. zo. o.	ポーランド	(24)	48,000	50%	2008年
海外も含めた合計			(244)	428,860		
*5()内は 当社が他社保有の事業会社株式を	棄り高けた時期					

^{*5()}内は、当社が他社保有の事業会社株式を譲り受けた時期